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Assignment 13

Deterministic-shift extension (see Brigo and Mercurio [2; 3])1

In this exercise, we illustrate a simple method to extend any time-homogeneous short-rate model, so as to exactly
reproduce any observed term structure of interest rates while preserving the possible analytical tractability of the
original model. We fix some positive integer n and some parameter vector α ∈ Rn, as well as some x0 ∈ R. We consider
the following one-dimensional time-homogeneous diffusion

xαt = x0 +
∫ t

0
µ
(
xαs , α

)
ds+

∫ t

0
σ
(
xαs , α

)
· dWλ

s , t ≥ 0,

where the maps µ : R× Rn −→ R and σ : R× Rn −→ Rd are assumed to be smooth enough so that there is a unique
strong solution to the above equation.

The process xα represents the short-rate in the ‘reference model’ (that is to say before the extension we will study),
and we assume that zero-coupon bond prices can be obtained explicitly in this model, in the sense that there exists
some map z : [0,+∞)2 × R× Rn −→ R such that

EPλ
[
e−
∫ T
t
xαs ds

∣∣∣∣Ft] =: z
(
t, T, xαt , α

)
, 0 ≤ t ≤ T.

We define now the short-rate as
rt := xαt + ϕ(t, α, x0), t ≥ 0,

where ϕ : [0,+∞) × Rn+1 −→ R is a deterministic function, assumed to be locally integrable. We also give ourselves
an initial value r0 ∈ R for the short-rate, and thus enforce

ϕ(0, α) + xα0 = r0.

1) Prove that zero-coupon bond prices in this model are given by

B(t, T ) = e−
∫ T
t
ϕ(s,α,x0)ds

z
(
t, T, rt − ϕ(t, α, x0), α

)
, 0 ≤ t ≤ T.

2) Define the following reference instantaneous forward rate

f0(T, α) := − 1
z(0, T, x0, α)

∂z(0, T, x0, α)
∂T

.

Prove that the model fits perfectly the currently observed yield curve if and only if

ϕ(T, α, x0) = fM (0, T )− f0(T, α), T ≥ 0,

or equivalently

e−
∫ T
t
ϕ(s,α,x0)ds = BM (0, T )

z(0, T, x0, α)
z(0, t, x0, α)
BM (0, t) =: Φ(t, T, x0, α).

3) Once the initial yield curve has been fitted to the model, how many parameters can we still choose freely in the
model. How would you propose to choose them in practice?

4) We now assume that call (and thus put) options on zero-coupon bonds also admit explicit formulae in the reference
model. In other words, we suppose that there is some map Z : [0,+∞)3 × [0,+∞) × R × Rn −→ R such that for any
0 ≤ t ≤ T ≤ s and any strike K ≥ 0

EPλ
[
e−
∫ T
t
xαudu(

z
(
T, s, xαT , α

)
−K

)+∣∣∣∣Ft] = Z
(
t, T, s,K, xαt , α

)
, t ∈ [0, T ].

1And also Scott [5], Dybvig [4] and Avellaneda and Newman [1] for related approaches.
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Prove then that in this model

ZBCt(T, s,K) = e−
∫ s
t
ϕ(u,α,x0)du

Z

(
t, T, s,Ke

∫ s
T
ϕ(u,α,x0)du

, rt − ϕ(t, α, x0), α
)
.

5) Explain, without giving formulae, how we can use the previous question to obtain prices for caps and floors. Give
also sufficient conditions, in this model, to be able to obtain explicit formulae for swaptions.

6) We consider the extension of Vašíček’s model. meaning that we take α := (k, θ, σ) and

xαt = x0 +
∫ t

0
k
(
θ − xαs

)
ds+ σWλ

t , t ≥ 0.

Compute the function ϕ(·, α, x0) allowing to fit perfectly the initial yield curve in this case. Show then that we can find
a deterministic map η (which you will give explicitly) such that the dynamics of r can be written

rt = r0 +
∫ t

0

(
η(s)− krs

)
ds+ σWλ

t , t ≥ 0,

and conclude that in this case, the deterministic-shift extension coincides with the Hull–White extended Vašíček model.

7) Answer the same questions when the reference model is the CIR model. Is the extension equivalent to a CIR model
with time-dependent coefficients?

Options on futures contracts

We place ourselves again in the context of Chapter 9 in the notes, and we fix throughout the exercise some maturity
T > 0.

1) For this question (and only this question), we place ourselves in a discrete-time setting where trading can only happen
at the fixed instants (ti)i∈{0,...,n} for some positive integer n and where

0 =: t0 < t1 < t2 < · · · < tn−1 < tn := T.

Futures contracts, unlike forward contracts, are marked-to-market, meaning that they receive cash-flows at every trading
dates. More precisely, a futures contract is an agreement to purchase an asset at the maturity T , for a pre-specified
price, called the futures price. This futures price is paid via a sequence of instalments over the contract’s life. As
with forward contracts, no cash-flow happens at the inception of the contract, supposed to correspond to time 0 here.
However, a cash payment is made at every trading date, corresponding to the change in the futures price between this
date and the previous trading one. Mathematically, if we define the futures price at time t, for an asset S with maturity
T by Gt(T ;ST ), then the cash-flows are

Gti(T ;ST )−Gti−1(T ;ST ), at time ti, i ∈ {1, . . . , n}.

Explain why the value Vt of a futures contract is 0 at any time (ti)i∈{0,...,n}. Show as well that

Vti = EPλ
[

n∑
k=i+1

d(ti, tk)
(
Gtk(T ;ST )−Gtk−1(T ;ST )

)∣∣∣∣∣Fti
]
.

Prove then that GT (T ;ST ) = ST and deduce from all the above that the futures prices are actually given by

Gti(T ;ST ) = EPλ[ST ∣∣Fti], i ∈ {1, . . . , n}.
2) Given the result of the previous question, and coming back to our continuous-time models, we now define the futures
price for the tradable asset S, with maturity T , to be

Gt(T ;ST ) = EPλ[ST ∣∣Ft], t ∈ [0, T ].
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Prove that the difference between forward and futures prices is given by

Ft(T ;ST )−Gt(T ;ST ) = CovPλ [ST , d(t, T )|Ft]
B(t, T ) , t ∈ [0, T ].

Assuming in addition that the asset S has the dynamics

St = S0 +
∫ t

0
Ss
(
rsds+ σSs · dWλ

s

)
, t ∈ [0, T ],

and that the process b(·, T )− σS· is actually deterministic, then

Gt(T ;ST ) = Ft(T ;ST ) exp
(∫ T

t

(
b(s, T )− σSs

)
· b(s, T )ds

)
, t ∈ [0, T ],

and the dynamics of the futures prices is given by

Gt(T ;ST ) = G0(T ;ST ) +
∫ t

0
Gs(T ;ST )

(
σSs − b(s, T )

)
· dWλ

s , t ∈ [0, T ].

Let us now consider an option written on a futures contract. More precisely, we fix T ≤ s and T ≤ u and consider the
following payoff with maturity T

ξ := B(T, s)f
(
GT (u;ST )

)
.

Our goal is now to both replicate and give the price of this option. For this, we will use self-financing portfolios for
which we invest in zero-coupon bonds with maturity s and futures contracts on S with maturity u. We also assume
that both σS and b(·, s) are deterministic functions.

3) If we denote by ∆ the process keeping track of how many futures contracts are held in the portfolio, and by ∆o the
one keeping track of how many zero-coupon bonds are held in the portfolio, prove that

X∆,∆o

t = ∆o
tB(t, s), X∆,∆o

t = X∆,∆o

0 −
∫ t

0
∆`d

(
G`(u;ST )

)
+
∫ t

0
∆o
`dB(`, s), t ∈ [0, T ].

4) We are looking for replicating self-financing portfolios such that there exists some map v : [0, T ]× (0,+∞)2, smooth
in all its variables, with

X∆,∆o

t = v
(
t, Gt(u;ST ), B(t, s)

)
, t ∈ [0, T ].

Prove that, necessarily, the map v must satisfy
∂tv + x2

2 ‖σ
S
t − b(t, u)‖2∂2

xxv + y2

2 ‖b(t, s)‖
2∂2
yyv + (σSt − b(t, u)) · b(t, s)xy∂xyv = 0, (t, x, y) ∈ [0, T )× (0,+∞)2,

v(t, x, y) = y∂yv(t, x, y), (t, x, y) ∈ [0, T )× (0,+∞)2,

v(T, x, y) = yf(x), (x, y) ∈ (0,+∞)2.

5) By looking for a solution to the previous PDE of the form v(t, x, y) = yw(t, x), and then using Feynman–Kac’s
formula, prove then that the unique possible value for v is

v(t, x, y) = y

∫
R
g
(
xeη(t,T )+

√
ζ(t,T )z− ζ(t,T )

2

)e− z
2

2
√

2π
, (t, x, y) ∈ [0, T ]× (0,+∞)2,

where we defined

η(t, T ) :=
∫ T

t

(
σS` − b(`, u)

)
· b(`, s)d`, ζ(t, T ) :=

∫ T

t

∥∥σS` − b(`, u)
∥∥2d`, t ∈ [0, T ].

Give then explicitly the replicating strategy and the no-arbitrage price for the option.
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6) We now consider the special case of a call option with maturity T , strike K, written on a futures contract settling at
time T for delivery of one unit of S. In other words, we take T = s = u and g(x) = (x−K)+. Give a Black–Scholes–like
formula for the value and the replication strategy for this option.

7) Derive similarly the value of a put option with maturity T , strike K, written on a futures contract settling at time
T for delivery of one unit of S. Deduce that the call–put parity takes the form

Ct
(
T,K;GT (T ;ST )

)
− Ptt

(
T,K;GT (T ;ST )

)
= B(t, T )Gt(T ;ST )eη(t,T ) −KB(t, T ), t ∈ [0, T ].

What difference can you see compared to call–put parity for options written on forward contracts, or the asset S itself?
Comment.
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